Endogenous dopamine suppresses initiation of swimming in prefeeding zebrafish larvae.

نویسندگان

  • Vatsala Thirumalai
  • Hollis T Cline
چکیده

Dopamine is a key neuromodulator of locomotory circuits, yet the role that dopamine plays during development of these circuits is less well understood. Here, we describe a suppressive effect of dopamine on swim circuits in larval zebrafish. Zebrafish larvae exhibit marked changes in swimming behavior between 3 days postfertilization (dpf) and 5dpf. We found that swim episodes were fewer and of longer durations at 3 than at 5dpf. At 3dpf, application of dopamine as well as bupropion, a dopamine reuptake blocker, abolished spontaneous fictive swim episodes. Blocking D2 receptors increased frequency of occurrence of episodes and activation of adenylyl cyclase, a downstream target inhibited by D2-receptor signaling, blocked the inhibitory effect of dopamine. Dopamine had no effect on motor neuron firing properties, input impedance, resting membrane potential, or the amplitude of spike afterhyperpolarization. Application of dopamine either to the isolated spinal cord or locally within the cord does not decrease episode frequency, whereas dopamine application to the brain silences episodes, suggesting a supraspinal locus of dopaminergic action. Treating larvae with 10 microM MPTP reduced catecholaminergic innervation in the brain and increased episode frequency. These data indicate that dopamine inhibits the initiation of fictive swimming episodes at 3dpf. We found that at 5dpf, exogenously applied dopamine inhibits swim episodes, yet the dopamine reuptake blocker or the D2-receptor antagonist have no effect on episode frequency. These results led us to propose that endogenous dopamine release transiently suppresses swim circuits in developing zebrafish.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous dopamine suppresses initiation of swimming in pre - feeding zebrafish

Dopamine is a key neuromodulator of locomotory circuits, yet, the role that dopamine plays during development of these circuits is less well understood. Here, we describe a suppressive effect of dopamine on swim circuits in larval zebrafish. Zebrafish larvae exhibit marked changes in swimming behavior between 3 days post fertilization (dpf) and 5dpf. We found that swim episodes were fewer and o...

متن کامل

Control of Movement Initiation Underlies the Development of Balance

Balance arises from the interplay of external forces acting on the body and internally generated movements. Many animal bodies are inherently unstable, necessitating corrective locomotion to maintain stability. Understanding how developing animals come to balance remains a challenge. Here we study the interplay among environment, sensation, and action as balance develops in larval zebrafish. We...

متن کامل

Movement and function of the pectoral fins of the larval zebrafish (Danio rerio) during slow swimming.

Pectoral fins are known to play important roles in swimming for many adult fish; however, their functions in fish larvae are unclear. We examined routine pectoral fin movement during rhythmic forward swimming and used genetic ablation to test hypotheses of fin function in larval zebrafish. Fins were active throughout bouts of slow swimming. Initiation was characterized by asymmetric fin abducti...

متن کامل

The Behavioral and Pharmacological Actions of NMDA Receptor Antagonism are Conserved in Zebrafish Larvae.

Dizocilpine maleate (MK-801) is one of several NMDA receptor antagonists that is widely used to pharmacologically model the symptoms of psychosis and schizophrenia in animals. MK-801 elicits behaviors in adult zebrafish (Danio rerio) that are phenotypically consistent with behaviors observed in humans and rodents exposed to tbhe drug. However, the molecular and cellular processes that mediate t...

متن کامل

Acute ethanol treatment upregulates th1, th2, and hdc in larval zebrafish in stable networks

Earlier studies in zebrafish have revealed that acutely given ethanol has a stimulatory effect on locomotion in fish larvae but the mechanism of this effect has not been revealed. We studied the effects of ethanol concentrations between 0.75 and 3.00% on 7-day-old larval zebrafish (Danio rerio) of the Turku strain. At 0.75-3% concentrations ethanol increased swimming speed during the first minu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 100 3  شماره 

صفحات  -

تاریخ انتشار 2008